Metabolism oxalic acid: failure causes and consequences of molecular-biochemical factors for the formation of oxalate-induced diseases

  • L. V. Korol State Institution «Institute of Nephrology of the National Academy of Medical Sciences of Ukraine»
  • V. S. Vasylchenko State Institution «Institute of Nephrology of the National Academy of Medical Sciences of Ukraine»
Keywords: oxalic acid, metabolism, oxalate-induced diseases


Mechanisms mediating oxalate-induced alterations in renal have attracted the attention of scientists in recent years.Various mechanisms have been proposed to explain crystal retention. The present review assesses the biochemical mechanisms of oxalate-induced alterations and diagnostically significant markers of organ damage caused by oxalate.

The article focuses on the modern data of molecular-biochemical aspects of the formation of oxalate-induced diseases.


Download data is not yet available.


William AW,  Wilson DM. Dietary intake, absorption, metabolism, and excretion of oxalate. Seminars in Nephrology [Internet]. 1990;10(1): 2-8. Available from:

Borisova TP. Giperoksalurija I oksalatno-kal'cievaja kristallurija: mehanizmy razvitija I vozmozhnosti korrekcii. Mizhnarodnyi zhurnal pediatrii, akusherstva ta hinekolohii [Internet]. 2016;9;3:51-7. Available from:  [In Russian].

Robertson DS. The function of oxalic acid in the human metabolism.                     Clinical Chemistry and Laboratory Medicine. 2011; 49(9) : 1405-12.                                        doi: 10.1515/CCLM.2011.238

Sakhaee K. Unraveling the mechanisms of obesity – induced hyperoxaluria. Kidney Int. 2018;93(5):1038-40. doi:  10.1016 / j.kint.2018.01.012

Oppici E, Montioli R, Cellini B. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview. Biochim Biophys Acta. 2015;1854(9):1212-9. doi: 10.1016/j.bbapap.2014.12.029

Bouzidi H, Majdoub A, Daudon M, Najjar MF. Primary hyperoxaluria: A review. Nephrol Ther. 2016;12(6):431-6. doi: 10.1016/j.nephro.2016.03.005.

Lorenzo-Sellares V, Torres-Ramirez A , Salido E. Primary hyperoxaluria. Nefrologia (English Version). 2014;34:398-412. doi: 10.3265/Nefrologia.pre2014.Jan.12335

Hodgkinson A, Zarembski PM. Oxalicacid metabolism in man: A review. Calcified Tissue Research [Internet]. 1968;2(1):115–32. doi: 10.1007/bf02279201.

Aver'janova NI, Balueva LG. Oksalatnaja kristallurija y detej. Mezhdunarodnyj zhurnal prikladnyh I fundamental''nzhissledovanij [Internet]. 2012;5:25-7. Available from: [In Russian].

Hubskyi YuI. Bioorhanichna khimiia. Vinnytsia: Nova Knyha, 2007. 464 p. [in Ukrainian].

Oxalates control is a major new factor in autism therapy [Internet]. November 16, 2015. Available from:

Aver'janova NI, Balueva LG, Ivanova NV, Rudavina TI. Narushenie obmena shhavelevoj kisloty u detej. Sovremennye problem nauki I obrazovanija [Internet]. 2015;3. Available from: [In Russian].

Turkmen K, Erdur FM. The relationship between colonization of Oxalobacter formigenes serum oxalic acid and endothelial dysfunction in hemodialysis patients: from impaired colon to impaired endothelium. Med Hypotheses, 2015;84:273-5.  doi: 10.1016/j.mehy.2015.01.010. Epub 2015 Jan 19.

Milliner DS. The primary hyperoxalurias: analgorithm for diagnosis. Am J Nephrol [Internet].  2005; 25: 154-60. doi : 10.1159/000085407.

Your health education: low oxalate diet. Bulletin UPMC Life changing medicine [Internet]. Available from:

Getting JE, Gregoire JR, Phul A, Kasten MJ. Oxalate nephropathy due to ‘juicing’: case report and review. Am J Med [Internet]. 2013;126:768-72. doi: 10.1016/j.amjmed.2013.03.019

Lange JN, Mufarrij PW, Easter L, Knight J, Holmes RP, Assimos DG. Fish Oil Supplementation and Urinary Oxalate Excretion in Normal Subjects on a Low-oxalate Diet. Urology [Internet]. 2014;84(4):779-82. doi: 10.1016/j.urology.2014.04.052

Cai X, Ge C, Xu C, Wang X, Wang S, Wang Q. Expression Analysis of Oxalate Metabolic Pathway Genes Reveals Oxalate Regulation Patterns in Spinach. Molecules. 2018;23(6):1286. doi: 10.3390/molecules23061286

Knight J, Madduma-Liyanage K, Mobley JA,  Assimos DG, Holmes RP. Ascorbic acid intake and oxalate synthesis. Urolithiasis. 2016;44:289–97. doi: 10.1007/s00240-016-0868-7

Lange JN, Wood KD, Knight J, Assimos DA, Holmes RP. Glyoxal formation and its role in endogenous oxalate synthesis. Adv Urol. 2012. doi: 10.1155/2012/819202.

Holmes RP, Knight J, Assimos DG. Lowering urinary oxalate excretion to decrease calcium oxalate stone disease. Urolithiasis. 2015;44(1):27-32. doi: 10.1007/s00240-015-0839-4

Thomas LD, Elinder CG, Tiselius HG, Wolk A, Akesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Internal Med. 2013;173(5):386–8. doi: 10.1001/jamainternmed.2013.2296

Holmes RP, Assimos DG. Glyoxylate Synthesis and Its Modulation and Influence on Oxalate Synthesis. J Urol [Internet]. 1998;160:1617–24. Available from:

Bhasin B, Urekli HM, Atta MG. Primary and secondary hyperoxaluria: understanding the enigma. World J Nephrol. 2015;4:235-44. doi: 10.5527/wjn.v4.i2.235.

Summitt CB, Johnson LC, Jönsson TJ, Parsonage D, Holmes RP, Lowther WT. Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria. Biochem J. 2015;466(2):273-81. doi: 10.1042/BJ20141159

Adams E, Frank L. Metabolism of proline and the hydroxyprolines. Annu Rev Biochem. 1980;49:1005-61. doi: 10.1146/

Moxley MA, Tanner JJ, Becker DF. Steady-state kinetic mechanism of the proline: ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli. Arch Biochem Biophys. 2011;516:113-20. doi: 10.1016/

Riedel TJ, Johnson LC, Knight J, Hantgan RR, Holmes RP, Lowther WT. Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One. 2011;6:260-1. doi: 10.1371/journal.pone.0026021

Khan S, Maslamani S, Atmani F, Glenton PA, Opalko FJ, Thamilselvan S, et al. Membranes and Their Constituents as Promoters of Calcium Oxalate Crystal Formation in Human Urine. Calcif Tissue Int [Internet]. (2000) 66: 90-6. Available from:

Medeira MC. Oxalate transfer across the membranes of sarcoplasmic reticulum during the uptake of Ca++. 1982;3(1): 67-79. doi: 10.1016/0143-4160(82)90038-0.

Chutipongtanate S, Thongboonkerd V. Renal tubular cell membranes inhibit growth but promote aggregation of calcium oxalate monohydrate crystals. Chem Biol Interact. 2010;188(3):421-6. doi: 10.1016/j.cbi.2010.08.003.

Whittamore JM, Hatch M. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis. 2016;45(1):89-108. doi: 10.1007/s00240-016-0952-z

Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch. 2004; 447: 710-21. doi : 10.1007/s00424-003-1090-3

Thomson RB, Thomson CL, Aronson PS. N-glycosylation critically regulates function of oxalate transporter SLC26A6. Am J Physiol Cell Physiol. 2016;311(6):866-73. doi: 10.1016/j.juro.2016.11.016

Lorenz EC, Michet CJ, Milliner DS, Lieske JC. Update on oxalate crystal disease. Curr Rheumatol Rep [Internet]. 2013;15(7):340. Available from:

Ermer T, Kopp C, Asplin JR, Granja I, Perazella MA, Reichel M, et al. Impact of Regular or Extended Hemodialysis and Hemodial filtration on Plasma Oxalate Concentrations in Patients With End-Stage Renal Disease. Kidney Int Rep. 2017 Jun 8;2(6):1050-1058. doi: 10.1016/j.ekir.2017.06.002

Bouzidi H, Majdoub A, Daudon M, Najjar MF. Primary hyperoxaluria: Areview. Nephrol Ther. 2016;12(6):431-6. doi: 10.1016/j.nephro.2016.03.005

 Salido E, Pey AL, Rodriguez R, Lorenzo V. Primary hyperoxaluria: disorders of glyoxylate detoxification. Biochim Biophys Acta 2012;1822(9):1453-64.  doi: 10.1016/j.bbadis.2012.03.004.

Rootman MS, Mozer-Glassberg Y, Gurevich M, Schwartz M, Konen O. Imaging features of primary hyperoxaluria  l. Clin Imaging. 2018;52:370-376. doi: 10.1016/j.clinimag.2018.09.009

Elgstoen KBP, Johnsen LF, Woldseth B, Morkrid L, Hartmann A. Plasma oxalate following kidney transplantation in patients without primary hyperoxaluria. Nephrology Dialysis Transplantation. 2010;25(7):2341-5. doi: 10.1093/ndt/gfq065

Majdoub A, Daudon M, Najjar MF. Iconography : Hyperoxalurie primitive : une revue de la littérature. Nephrol Ther. 2016 Nov;12(6):431-436. doi: 10.1016/j.nephro.2016.03.005

Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat. 2003; 22: 497. doi:  10.1002/humu.9200.

Cochat P, Rumsby G. Primary Hyperoxaluria. N Engl J Med. 2013;369:649–58. doi: 10.1056/NEJMra1301564.

Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol 2012;8(8):467-75. doi: 10.1038/nrneph.2012.113

Belostotsky R, Pitt JJ, Frishberg Y. Primary hyperoxaluria type III – a model for studying perturbation singly oxylate metabolism. J Mol Med (Berl). 2012;90:1497-504. doi: 10.1007/s00109-012-0930-z.

Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 2010;87: 392-9. doi: 10.1016/j.ajhg.2010.07.023

Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther WT. 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition. BiochimBiophysActa. 2012;1822:1544-52. doi: 10.1016/j.bbadis.2012.06.014. 

Bernardino M, Parmar MS. Oxalate nephropathy from cashew nut intake. CMAJ [Internet]. 2016. doi: 10.1503 /cmaj.151327.

Jur'evaJeA, Morozov SL. Dizmetabolicheskie nefropatii u detej. Praktika pediatra [Internet]. 2017;10-11. Available from: [In Russian]. 

Lumlertgul N, Siribamrungwong M, Jaber BL, Susantitaphong P. Secondary Oxalate Nephropathy: A Systematic Review. Kidney Int Rep. 2018;3(6):1363-72. doi: 10.1016/j.ekir.2018.07.020

Evan AP, Lingeman JE, Worcester EM. Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int. 2010;78:310-17. doi: 10.1038/ki.2010.131

Roux-en-YTroxell ML, Houghton DC, Hawkey M. Enteric oxalate nephropathy in the renal allograft: an underrecognized complication of bariatric surgery. Am J Transplant. 2013;13:501–509. doi: 10.1111/ajt.12029.

Nasr SH, D'Agati VD, Said SM, StokesMB, Largoza MV, Radhakrishnan J, et al. Oxalate nephropathy complicating Roux-en-Y gastric bypass: an underrecognized cause of irreversible renal failure. Clin J Am Soc Nephrol. 2008;3:1676–1683. doi: 10.2215/CJN.02940608

Perinpam M, Enders FT, Mara KC, Vaughan LE, Mehta RA, Voskoboev N, et al. Plasma oxalate in relation to eGFR in patients with primary hyperoxaluria, enteric hyperoxaluria and urinary stone disease. Clin Biochem. 2017;50(18):1014-9. doi: 10.1016/j.clinbiochem.2017.07.017

Ligon CB, Hummers LK, McMahan ZH. Oxalate nephropathy in systemic sclerosis: case series and review of the literature. Semin Arthritis Rheum. 2015;45:315-20. doi: 10.1016/j.semarthrit.2015.06.017.

Solomon LR, Nixon AC, Ogden L, Nair B. Orlistat-induced oxalate nephropathy: an under-recognised cause of chronic kidney disease. BMJ Case Rep. 2017;12. doi: 10.1136/bcr-2016-218623

Cartery C, Faguer S, Karras A. Oxalate nephropathy associated with chronic pancreatitis. Clin J Am SocNephrol. 2011;6:1895-902. doi:  10.2215/CJN.00010111

Knauf  F, Thomson RB, Heneghan JF,  Jiang Z, Adebamiro A, Thomson CL, et al. Loss of cystic fibrosis transmembrane regulator impairs intestinal oxalate secretion. J Am SocNephrol. 2017;28:242-9. doi: 10.1681/ASN.2016030279

Arvans D, Jung YC, Antonopoulos D,  Koval J, Granja I, Bashir M, et al. Oxalobacterformigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am SocNephrol. 2017;28:876-87. doi: 10.1681/ASN.2016020132

Gulhan B, · Turkmen K, · Aydin M, ·Gunay M, · Cıkman A, · Kara M. The Relationship between Serum Oxalic Acid, Central Hemodynamic Parameters and Colonization by Oxalobacterformigenes in Hemodialysis Patients. Cardiorenal Med. 2015;5:164-74. doi: 10.1159/000381219

Hatch M, Cornelius J. Oxalobacter sp. Reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006;69:691-8. doi:  10.1038/

Convento MB, Pessoa EA, Cruz E, Glória MA, Schor N, Borges FT. Calcium oxalate crystals and oxalate induce an epithelial-to-mesenchymal transition in the proximal tubular epithelial cells: Contribution to oxalate kidney injury. Scientific Rep. 2017;7:45740. doi: 10.1038/srep45740

Loeffler I, Wolf G. Transforming growth factor-β and the progression of renal disease.Nephrol Dial Transplant. 2014; 29 (1):37-45. doi: 10.1093/ndt/gft267

Mulay SR, Eberhard JN, Pfann V, Marschner JA, Darisipudi MN, Daniel C, et al. Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am J Physiol Renal Physiol. 2016;310(8): 785-95. doi: 10.1152/ajprenal.00488.2015

Kanlaya R, Sintiprungrat K, Thongboonkerd V. Secreted products of macrophages exposed to calcium oxalate crystals induce epithelial mesenchymal transition of renal tubular cells via RhoA-dependent TGF-β1 pathway. Cell Biochem. Biophys. 2013;67:1207-15. doi: 10.1007/s12013-013-9639-z

Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest. 2013;123(1):236-46. doi: 10.1172/JCI63679

Bacchetta J1, Fargue S, Boutroy S, Basmaison O, Vilayphiou N, Plotton I, et al. Bone metabolism in oxalosis: a single-center study using new imaging techniques and biomarkers. PediatrNephrol. 2010;25:1081-9. doi: 10.1007/s00467-010-1453-x

Bakshi NA, Al-Zahrani H. Bone marrow oxalosis. Blood [Internet]. 2012;120(1):8. Available from:

Beck BB, Hoyer-Kuhn H, Gobel H, Habbig S, Hoppe B. Hyperoxaluria and systemic oxalosis: an update on current therapy and future directions. Expert OpinInvestig Drugs. 2013;22:117-29. doi: 10.1517/13543784.2013.741587

Sahin G, Acikalin MF, Yalcin AU. Erythropoietin resistance as a result of oxalosis in bone marrow. Clin Nephrol [Internet]. 2005;63:402-4. Available from:

Liang Q, Li X, Zhou W, Su Y, He S, Cheng S, et al. An Explanation of the Underlying Mechanisms for the In Vitro and In Vivo Antiurolithic Activity of Glechomalongituba. Oxid. Med. Cell. Longev. 2016;2016:3134919. doi: 10.1155/2016/3134919

Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: Evidence from clinical and experimental investigations. J. Urol. 2013;189:803-11. doi: 10.1016/j.juro.2012.05.078

Kizivat T, Smolić M, Marić I,  Levak MT, Smolić R, Čurčić IB et al. Antioxidant Pre-Treatment Reduces the Toxic Effects of Oxalate on Renal Epithelial Cells in a Cell Culture Model of Urolithiasis. Int J Environ Res Public Health. 2017;14(1):109. doi: 10.3390/ijerph14010109.

Pragasam V, Kalaiselvi P, Subashini B, Sumitra K, Varalakshmi P. Structural and functional modification of THP on nitration: Comparison with stone formers THP. Nephron Physiol. 2005;99:28–34. doi: 10.1159/000081800

Abhishek A, Vidhi T, Eldho P, Divya G, Mahesh A, Ritu K, et al. Expression of heterologous oxalate decarboxylase in HEK293 cells confers protection against oxalate induced oxidative stress as a therapeutic approach for calcium oxalate stone disease. J Enzyme Inhib Med Chem. 2017;32(1):426-33. doi: 10.1080/14756366.2016.1256884

Knight J, Wood KD, Lange JN, Assimos DG, Holmes RP. Oxalate Formation FromGlyoxal in Erythrocytes. Urology. 2015;88:226. doi: 10.1016/j.urology.2015.10.014.

Thamilselvan V, Menon M, Thamilselvan S. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid. BJU  Int. 2014;114(1):140-50. doi: 10.1111/bju.12642.

Lee HJ, Jeong SJ, Park MN, Linnes M, Han HJ, Kim JH, et al. Gallotannin suppresses calcium oxalate crystal binding and oxalate-induced oxidative stress in renal epithelial cells. Biol. Pharm. Bull. 2012;35:539-44. doi: 10.1248/bpb.35.539.

Paulhac P, Desgrandchamps F, Dumas JP, Teillac P, Duc AL, Colombeau P. Role of uropontin in calcium oxalate lithogenesis. Prog Urol [Internet]. 2002;12 (1): 114-7. Available from:

Castellaro AM, Tonda A, Cejas HH, Ferreyra H, Caputto BL, Pucci OA, et al. Oxalate induces breast cancer. BMC Cancer. 2015;15:761. doi: 10.1186/s12885-015-1747-2

Khukhlina OS, Vilihorska KV, Antoniv AA, Andrusiak OV, Poliukhovych LYa, Bevziuk LA. Klinichne znachennia oksalaturii v patsiientiv iz khronichnym obstruktyvnym zakhvoriuvanniam lehen i komorbidnym khronichnym piielonefrytom na tli sechokamianoi khvoroby. Zaporizkyi medychnyi zhurnal. 2017;19(3): 299-303. doi: 10.14739/2310-1210.2017.3.100768. [In Ukrainian].

Lorenz EC, Michet CJ, Milliner DS, Lieske JC. Up date on oxalate crystal disease. Curr Rheumatol Rep 2013;15(7):340. doi: 10.1007/s11926-013-0340-4

Samarneh MM, Shtaynberg N, Goldman M, Epstein E, Kleiner M, El-Sayegh S. Severe oxalosis with systemic manifestations. J Clin Med Res 2012;4(1):56-60. doi: 10.4021/jocmr525w

Mydlík M, Derzsiová K. Oxalic acid asauremic toxin. J Renal Nutr. 2008;18:33-9. doi:

Muji A, Moll S, Saudan P. Oxalate nephropathy: a new entity of acute kidney injury in diabetic patients Rev Med Suisse [Internet]. 2015;11(463):493-8. Available from:

O’Kell AL, Grant DC, Khan S R. Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis. 2017;45(4):329-36. doi: 10.1007/s00240-017-0978-x

Johnson RJ, Perez-Pozo SE, Lillo JL, Grases F, Schold JD, Kuwabara M. Fructose increases risk for kidney stones: potential role in metabolic syndrome and heat stress. BMC Nephrology. 2018;19:315. doi: 10.1186/s12882-018-1105-0

Ustinova EE, Malov VI, Lareva NV. Oksalatnaja nefropatija s ostrym povrezhdeniem pochek. Klinicheskaja medicina. 2016;94(6):467-9. doi: 10.18821/0023-2149-2016-94-6-467-469. [In Russian].

Kruse JA. Methanol and ethylene glycol intoxication. Crit Care Clin. 2012;28(4):661-711. doi: 10.1016/j.ccc.2012.07.002.

Voronina NV, Gel'mutdinov DD, Markina OI. Vlijanie nesteroidnyh protivovospalitel'nyh preparatov – ingibitorovi ne ingibitorov COG na sostojanie pochek u bol'nyh s oksalatnoj nefropatiej, komorbidnyh po osteoartrozu. Dal'nevostochnyj medicinskij zhurnal [Internet]. 2016;1. Available from: [In Russian].

Abstract views: 110
PDF Downloads: 72
How to Cite
Korol, L. V., & Vasylchenko, V. S. (2019). Metabolism oxalic acid: failure causes and consequences of molecular-biochemical factors for the formation of oxalate-induced diseases. Ukrainian Journal of Nephrology and Dialysis, (2(62), 54-67.