Kidneys and microbiota

Keywords: intestinal microbiota, dysbiosis, kidneys, uremic toxins, bi-directional interaction, targeted therapy.

Abstract

 The review article analyzes the results of studies of the bi-directional relationship of the intestinal microbiota and kidneys, the so-called colorenal interactive axis of interaction.  The intestinal microbiota is considered as a kind of organ that influences the brain, cardiovascular and immune systems, as well as the kidneys of the "host".  Short-chain fatty acids (SCFA) formed in the colon as the result of microbial metabolism from plant components of dietary fiber and acting as ligands for the olfactory receptor, paired G-proteins in the kidneys are recognized as the markers of this symbiosis.  With the help of modern omix technologies, the development of dysbiosis taking into account patients with chronic kidney disease (CKD) has been proved, which leads to the accumulation of precursors of uremic toxins, a decrease in the production of SCFA, which have nephroprotective properties and play a key role in energy homeostasis.

 Changes in the composition of the intestinal microbiota in CKD, an increase in the content of uremic toxins in the intestinal lumen contribute to the appearance of the “leaky” intestinal barrier syndrome, the movement of bacteria from the intestine into the general circulation, the development of systemic inflammation, oxidative stress, comorbidity, the progression of CKD, and an increase in mortality. Diets with restriction of protein and potassium quotas, violation of nutritional status lead to the development of dysbiosis in CKD.  A decrease in the diet of vegetables and fruit causes the expansion of bacteria producing uricase and urease, which are enzymes in the formation of uremic toxins and reduce the number and variety of bacteria producing short-chain fatty acids.  Potential targeted effects on the axis of “intestinal microbiota - chronic kidney disease” are being discussed: the use of a diet enriched in plant fibers, heat-treated, then chilled potatoes and rice as prebiotics (sources of resistant starch), nuts, plant seeds, and pro-, pre-, synbiotics, fecal transplantation.  Most of the proposed interventions in the structure and functions of the microbiota are not dangerous, side effects are minimal.

Downloads

Download data is not yet available.

References

Mayer E. The Mind-Gut Connection: How the Hidden Conversation Within Our Bodies Impacts Our Mood, Our Choices, and Our Overall Health. Moscow: Press ANF; 2018 р. [In Russian].

Remy B, Mion S, Pleuer L, Elias M, Chabriere E, Daude D. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Front. Pharmacol. 2018; 9: 203. doi.org/103389/ fpharm. 2018/00203.

Kchmel IA, Metlitskaya AZ. Quorum sensing reguljacija jekspressii genov – perspektivnaja mishen' dlja sozdanija lekarstv protiv patogennosti bakterij. Molekul. Biologija. 2006;40:195-210. [In Russian].

Grandelement C, Tanniers M, Morena S, Dessaux Y,Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev.  2016; 40(1): 86-116. https://doi.org/10.1093/femsre/fuv038

 Fetzner S. Quorum quenchingenzymes. J. Biothechnol. 2015;201:2-14. https://doi.org/10.1016/j.jbiotec.2014.09.001

Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM et al. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol. 2018; Aug 15; 9: 1830. doi: 10. 3389/fimmu.2018.o1830

Мargulis L, Fester R. Symbiosis as a Sourse of Evolutionary Innovation: Speciation and Morphogenesis. Cambridge, MA: The MIT Press; 1991. 470 p.

Rosenberg E. The hologenom theory of evolution contains Lamarckian aspects within a Darvinian framework. Environ. Microbiol. 2009;11(12):2952-9. https://doi.org/10.1111/j.1462-2920.2009.01995.x

Galla S, Chakraborty S., Meli B, Vijay-Kumar M, Joe B. Microbiotal-host interactions and hypertension. Physiology (Bethesda). 2017; 32:224-33. doi: 10.1152/physiol.00003.2017.

Drapkina OM. Rol' kishechnoj mikrobioty v patogeneze serdechno-sosudistyh zabolevanij i metabolicheskogo sindroma. Racional'naja farmakoterapija v kardiologii. 2018;14(4):567–74. [In Russian].

Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G et al. Gut microbiota disbiosis contributes to the development of hypertension. Microbiome. 2017; 5(1):14-25. doi: 10.1186/s40168-016-0222-x.

Orenstein R, Griesbach CL, DiBaise JK. Moving fecal microbiota transplantation into the mainstream. Nutr Clin Pract. 2013;28:589-98. doi: 10.1177/0884533613497516.

Santisteban MM, Kim S, Pepine CJ, Razada MK. Brain-gut-bone marrow axis: implications for hypertension and related therapeutics. Circ.Res. 2016; 118:1327-36. doi: 10.1161/CIRCRESAHA.116.307709.

Pluznick J, Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Curr. Hypertens. Rep.2017;19(4):2539. doi: 10.1007/s11906-017-0722-5.

Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;622: 57-72.  doi: 10.1079/PNS2002207.      

Mineev VN, Pfejfer AA. Jektopicheskie «renal'nye» receptory. Nefrologija. 2019;23(1):32-6. https //doi. Org/10.24884/1561- 6274-2019 – 23- 1-32-36. [In Russian].

Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals pays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110:4410-15. doi: 101073/pnas.1215927110

Lukichjov BG, Rumjancev ASh, Akimenko V. Mikrobiota kishechnika i hronicheskaja bolezn' pochek. Soobshhenie pervoe. Nefrologija. 2018;22(4): 57-73. doi/org/10.24884/1561-6274-2018-22-4-57-73. [In Russian].

Lukichjov BG, Rumjancev ASh, Panina IJu, Akimenko V. Mikrobiota kishechnika i hronicheskaja bolezn' pochek. Soobshhenie vtoroe. Nefrologija. 2019;23(1):18-31.doi.org/10.24884/1561-6274-2018-23-1-18-31. [In Russian].

Miyasaki T, Ise M, Hirata M, Endo K, Ito Y, Seo H, et al. Indoxyl sulphate stimulates renal synthesis of transforming growth factor-beta 1 and progression of renal failure. Kidney Int. 1997;63: 5211-4.

Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, et al. European         Uremic Toxin Work Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009;4:1551-8. https://doi.org/10.2215/CJN.03980609.

Lee JR, Hamady L, Lozupone C, Toussaint NS, Ling L, Pamer E, et al. Gut microbial community structure and complications after kidney transplantation: a pilot study Transplantation. 2014;98:697-705.

Noel S, Martiuna-Lingua MN, Bandapalle S, Pluznick J, Hamad AR, Petrson DA, et al. Intestinal microbiota – kidney cross-talk in acute kidney injury and chronic kidney disease. Nephron Clin. Pract. 2014;127:139–43.

Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid- producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014; 39(3):230-7. doi:10.1159/000360010. Epub2014 Mar 8.

Morgan XC, Huttenhower C. Meta «omic» analitic techniques for studying the intestinal microbiome. Gastroenterol. 2014;146(6):1437–48.

Xu J, Ma B, Su X, Huang Sh, Xu X, Zhou X, et al. Emerging Trends for Microbiome Analysis: from Single - Cell Functional Imaging to Microbiome Big Date. Engineering. 2017;3(1):66-70. https: // doi. org / 10.1016/J. Engl. 2017. 01/020.

Castillo-Rodriquez E, Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia- Iquacel C, Ferandez-Fernandez B, et al. Impact of Altered Intestinal Microbiota on Chronic Kidney Disease Progression. Toxins (Basel). 2018; 10(7):300. doi.org/10.3390/toxins10070300.

Sivkov FV, Sinjuhin VN, Arzumanov SV, Stecjuk EA, Korobova TA. Uremicheskie toksiny v krovi bol'nyh s terminal'noj stadiej pochechnoj nedostatochnosti pri disbioze kishechnika. Jeksperimental'naja i klinicheskaja urologija. 2014;2:94-7. [In Russian].

Dorofeev AJe, Rudenko NN, Derkach IA, Chechula JuV. Zabolevanija kishechnika i pochki. Gastrojenterologija. 2015;3(57):101-5. [In Russian].

Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2017 Jan; 179:24-37. doi: 10.1016/ trsl 2016.04.007.

Ramezani A, Massy ZA, Meijers B. Evenepoel P, Vanholder R, Rai DS. Role of Gut Microbiome in Uremia: A Potential Therapeutic Target. Am. J. Kidney Dis. 2016 Mar;67(3):483-98. doi:10.1053/j.ajkd.2015.09.027.

Macferson AJ, Uhr T. Induction of protective IgA by intestinal dendritis cells carrying commensal bacteria. Science. 2004; 303:1662-5.  doi:10.1126/scince.1091334.

Smith M, Kelly C, Alm E. How to regulate faecal transplants. Nature. 2014;606:290–1.

Felizardo RJF, Watanabe IKM, Dardi P, Camara NOS. The interplay among gut microbiota, hypertension and kidney disease: The role of short – chain fatty acids. Pharmacol. Res. 2019 Mar;141:366-77. doi:10.1016/j.phrs.2019.01.019.  

Lau WL, Savoi J, Nakata MB, Vasiri ND. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin. Sci (Lond). 2018 Mar 9;132(5):509-22. doi:10.1042/CS20171107.

Ghajarzadeh–Wurzner A, Berney M, Teta D, Genton L, Pruijm M. Gut microbiota and kidney diseases: dangerous liaisons ? Rev. Med. Suisse. 2018;14(595):422-5.

Ermolenko VM, Mihajlova NA, Batjerdjenje S. Uremicheskij sindrom i uremicheskie toksiny. Nefrologija i dializ. 2008;10(3-4):182-8. [In Russian]. 

Marzocco S, Faceli G, Di Micco L, Autore G, Adesso S, Dal Piaz F et al. Supplementation of Short- Chain Fatty Acid, Sodium Propionate, in Patients on Maintenance Hemodialysis: Beneficial Effects on Inflammatory Parameters and Gut-Derived Uremic Toxins, A Piot Study (PLAN Study). J. Clin. Med. 2018 Sep 30; 7(10):pii: E315. doi: 10.3390/jcm7100315.

Borges NA, Carmo FL, Stocler – Pinto MB, de Brito JS, Dolenga CJ, et al. Probiotic Supplementation in Chronic Kidney Disease: A Double – blind, Randomized, Placebo-controlled Trial. J. Ren. Nutr. 2018 Jan;28(1):28-36. doi:10.1053/jrn.2017.06.010.

Felizardo RJ, Castoldi A, Andrade-Oliveira V, Camara NOS. The microbiota and chronic kidney diseases: a double-edged sword. Clin. Transl. Immunology. 2016 Jun10;5(6):e86.  https://doi.org/10.1038/cti.2016.36.

Maheshwari V, Thijssen St, Tao X, Fuertinger DH, Kappel F, Kotanko P. In silico comparison of protein-bund uremic toxin removal by hemodialysis, hemodiafiltratrion, membrane adsorption, and binding competition. Sci Rep. 2019;9:909. doi10.1038/s41598-018-37195.

Jourde – Chiehe N, Dou L, Cerini C, Dignat George F, Vanholder R, Brunet P. Protein-bound toxins - update 2009. Semin. Dial. 2009;22:334-9.

Madero M, Cano KB, Campos I, Tao X, Maheswari V, Broun   J, et al.  Removal of Protein-Bound Uremic Toxins during Hemodialysis Using a Binding Competitor. Clin. J. Am. Soc. Nephrol. 2019 Mar.7; 14(3):394-402. doi:10.2215/CIN.05240418.

Vitetta L, Gobe G. Uremia and chronic kidney disease: The role of the gut microflora and therapies with pro-and prebiotics. Mol. Nutr. fud Res. 2013;57: 824-32.

Vaziri ND, Suematsu Y, Shimomura A, Vasiri ND. Uremic toxins and gut microbiome. Nihon Jinzo Gakkai Sh. 2017;59(4):535-44.

Vaziri ND, Liu SM, Lau WL, Khazaeli M, Nazertehrani S, Farzaneh SH et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One. 2014 Dec9; 9(12):e114881. doi:10.1371/journal pone. 0114881.

Warren FJ, Fukuma NM, Mikkelsen D, Flanagan BM, Williams BA, Lisle AT, et al. Food Starch Structure Impacts Gut Microbiome Composition. mSphere. 2018 May16;3(3):pii.e00086-18. doi: 10.1128/mSphere.00086-18.

Lee JR, Muthukumar T, Dadhania D, Taur Y, Jeng RR, Toussaint NC, et al. Gut microota and tacrolimus dosing in kidney transplantation. PLoS. 2005 Mar 27;10(3):e0122399. doi: 10.1371/journal.pone.0122399.

Dudar I, Shymova A, Shifris I, Malasaev M. Factors associated with nutritional status in peritoneal dialysis patients. Ukr. J. Nephr. Dial. 2018; 4(60):19-27. doi:10.31450/ukrjnd.4(60).2018.03.

Naeeni A, Poostiyan N, Teimouri Z, Mortasavi M, Soqhrati M, Poostiyan E. Assessment of Severety of Malnutrition in Peritoneal Dialysis Patients via Malnutrition. Adv. Biomed. Res. 2017; July 6:128. doi:10.4103/abr.abr 554-13.

Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut – kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018 Jul;14(7):442-56. doi:10.1038/s41581-018-0018-2.

Ajtbaev KF, Murkamilov IT, Kaliev RR. Hronicheskaja bolezn' pochek: patofiziologicheskaja rol' disbioza kishechnika i renoprotektivnaja jeffektivnost' vmeshatel'stv po ego moduljacii. Rossijskij medicinskij zhurnal. 2016; 22(3):157-62. doi: 10.18821/0869-2106-2016-22-3-157-162. [In Russian].


Abstract views: 291
PDF Downloads: 18303
Published
2019-11-14
How to Cite
Semydotska, Z., Chernyakova, I., & Avdeyeva, O. (2019). Kidneys and microbiota. Ukrainian Journal of Nephrology and Dialysis, (1(65), 48-57. https://doi.org/10.31450/ukrjnd.1(65).2020.07